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Abstract.

The suitability of artificial neural networks (ANNs) for detecting fault conditions in

pneumatic control valve actuators is investigated. Specifically, the ability of a neural network to act
as a predictor of correct valve behaviour is examined. Experimental results indicate that standard
network architectures are unsuitable for temporal prediction of non-linear system behaviour. An
original recurrent network architecture, designed specifically as a predictor and based on autoregres-
sive models and functional approximation is therefore proposed. The performance of this network is
evaluated using both measured data and data from simulations based on a mathematical model of
the valve. Laboratory implementation of the fault detection system produced encouraging qualita-
tive results, including high success rates for the detection of faults corresponding to valve Coulomb

friction changes and input pressure offsets.
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1. INTRODUCTION

Pneumatically-actuated control valves occur fre-
quently as a basic component of control systems in
many processing and manufacturing plants. The
wear and tear to which industrial control valve
actuators are subjected leads to degeneration of
performance and eventually to failure. In modern
automated plants, an unrevealed actuator fault
may have serious consequences. Although the de-
tection of sudden failures is usually easily accom-
plished, this is seldom the case when deterioration
is gradual. In fact, the use of feedback control
to maintain desirable process operation may com-
pensate for, and thus obscure, a developing fault.

Early detection of incipient faults based on con-
tinuous on-line monitoring of system signals can
improve safety and efficiency and can help to re-
duce downtime and plant maintenance require-
ments. Pioneering efforts in this field involved the
use of state and parameter estimators [1]. Such
techniques required rigorous and time-consuming
mathematical modelling of processes behaviour
and plant components. Their reliability was
linked directly to the accuracy of the modelling.

The limitations of cumbersome model-based ap-
proaches led researchers to consider alterna-
tive methods for fault detection and diagnosis.
For example, fault dictionaries were developed
and included in knowledge-based expert systems
(KBES) [2]. Tronically, KBES fault-detection

systems suffered from similar drawbacks to the
model-based systems that they were intended to
replace. Fault detection ability was limited by the
quality and exhaustiveness of an information base
rather than by the accuracy of a model [3].

In the mid-1980s, a resurgence of interest in arti-
ficial neural networks (ANNs) for pattern recog-
nition led to their successful application in fault
signature recognition systems [4, 2]. However, the
present investigation, instead of using the pattern-
recognition abilities of neural networks, uses an
ANN model-based predictor to delineate faulty
and normal actuator operation. This shift of em-
phasis is motivated by the fact that training sam-
ples for faulty valves are difficult to obtain. It is
easier to develop a model for the actuator under
normal operation and then to use this model to
detect faults or abnormalities. The objective is
fault detection as opposed to fault diagnosis.

While ANN fault signature recognition methods
require additional sensors in order to measure
quantities such as vibration and acoustic noise,
the system discussed here utilises only normal ac-
tuator input and output signals. It is able to
detect faults that relate directly to impairment
in actuator functionality, including many faults
that can not be distinguished using, e.g., vibra-
tion analysis.



Fig. 1. Experimental system for actuator fault detection

2. EXPERIMENTAL SYSTEM

The experimental arrangement employed to mon-
itor faults is shown in Fig. 1.

The control output signal to the valve i1s gener-
ated by software and is passed to a D/A con-
verter. A voltage to current converter produces
a corresponding current signal in the standard 4-
20mA range. This, in turn, i1s converted into a
valve-actuating pressure signal in the 20-100kPa
range by a current to pressure converter. A
type 513 RGS control valve (13mm body, 19 mm
linear stroke), manufactured by Fisher Controls
Co. is used 1n the experiments. A precision linear
potentiometer, which senses valve stem position,
is the only transducer employed.

In order to evaluate a fault-detection system, one
would ideally like to introduce physical modifi-
cations that affect actuator operation. Unfortu-
nately, it is very difficult to modify an industrial
control valve in order to introduce subtle incipi-
ent faults of a quantifiable nature. A mathemati-
cal model that describes valve dynamic behaviour
was therefore used to evaluate the effectiveness of
the fault-detection system in such cases. Details
of this model are discussed in Appendix A. The
actuator faults simulated using the mathematical
model were increases in friction and input pres-
sure offsets. Such pressure offsets could, e.g., rep-
resent calibration errors in the current to pressure
converter, degradation of the actuator spring or
partial blockage of the tubing supplying air to the
actuator.

3. THE FAULT DETECTION SYSTEM

It 1s desirable for a fault-detection system to de-
tect faults during transients because it is during
sudden changes of the inputs that many kinds of
fault are revealed. The proposed fault detection
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scheme performs transient fault detection by mak-
ing use of an ANN model of the control valve.
This neural net model is trained to behave like a
properly-functioning control valve. After training,
the model is operated in parallel with the control
valve as shown in Fig. 2.

If a fault occurs, the control valve output and the
output of the neural net model will differ, giving
rise to an error signal that can be used to signal
that a fault has occurred. During the experimen-
tal work, both the real valve and the mathemat-
ical valve model were used as the “control valve”
in Fig. 2.

It could be argued that a dynamic mathematical
model should be used in place of the neural net
model. However, such a model has the inherent
problem of being difficult to develop, especially,
if the system being modelled is nonlinear. Fur-
thermore, if there is a change in the plant being
modelled, e.g., a change in the pressure or viscos-
ity of the fluid flowing through the valve, a first-
principles model might have to be re-calibrated or
replaced.

Neural net models, on the other hand, can readily
be arranged to learn from real data and therefore
the discrepancies between the real world and the
model can be reduced. Tt is important though
to train the neural models properly. That is, the
neural models should not only be able to predict
well using training data, but also when presented
with data not encountered in the training set.
The term generalisation is often used to assess the
ability of the neural model to predict accurately
when presented with novel data [5]. Good gener-
alisation simply means good multivariate interpo-
lation. For the pneumatic actuator it was found
to be difficult to achieve acceptable generalisation.
Fortunately, theoretical insights into the trade-offs
involved have recently become available—this im-
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Fig. 2. Proposed fault detection system

portant topic is discussed further in section 3.1.

In Fig. 2, the squared values of the input, output
and error signals are integrated over a finite num-
ber of samples so as to obtain their “energies”.
The reason for using these energies and not the
signals themselves is that the energy of a signal is
invariant with respect to the waveform of the sig-
nal. In other words, the classifier does not need to
know the shape of the signals. Using the energy in
the signals is in fact a form of feature extraction.

By including the error signal, an extra dimension
is added to the input data to the classifier as de-
picted in Fig. 3.  This indicates that with the
extra dimension, it is possible for a neural net
classifier to fit a hyper surface that divides the to-
tal space into two subspaces, namely, the correct-
operation subspace and the faulty-operation sub-
space. A simple classifier composed of sigmoid
neurons was employed [6]. As seen in Fig. 3, the
clusters indicating normal and faulty operation
are well separated and even a common-threshold
classifier would have sufficed for the task.

3.1. Generalisation in Neural Network Models

Two significant bounds on the generalisation error
for sigmoid and radial basis networks have been
developed by Barron (in [7]) and Niyogi [8], re-
spectively. These bounds are based on a lemma
by Jones on the convergence rate of particular
approximation schemes [9-11, 8, 12] and on the
Vapnik-Chervonenkis Dimension [13]. Barron’s
and Niyogi’s (with probability > 1 — a, where a
is ideally a small number) generalisation bounds
are given by
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where O(h) represents terms of order h, n is the
number of parameters (weights) of the network, ¢
is the length of the training data set and d is the
dimension of the input vector.

The first term in (1) and (2) is known as bias,
while the second term is referred to as variance.
These error terms are intrinsic to all parame-
terised approximating schemes [5]. The bias term
measures the distance between the average esti-
mator and the actual function, while the wvari-
ance term quantifies the spread of the estimator
with respect to the data distribution. To achieve
good performance, both the bias and the variance
should be small. Unfortunately, there is a fun-
damental trade-off between the bias and the vari-
ance 1n that, with increasing number of param-
eters, the variance term increases while the bias
term decreases.

The only way to reduce bias and variance simulta-
neously is to introduce a priori knowledge into the
modelling process as discussed in section 4. In the
event of variations in the plant being modelled,
such as changes in the process fluid, the neural
model would simply have to be retrained.

4. DESIGN OF THE NEURAL NET
PREDICTOR

The design of the neural net predictor is a system
identification problem. The predictor was trained
by teaching it what the output time-signal should
be for a specific training input time-signal. Band-
limited, uniformly-distributed noise signals were
chosen as the input training signals because these
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Fig. 3. Signal energies for 60 signals generated at random, [0o] Normal valve [*] Friction increased from 5% to 10%

are likely to excite all system modes.

Several attempts have been made to solve the non-
linear identification problem using an extension of
the theory of linear autoregressive (ARX) models
combined with neural networks [14-20]. In these
attempts, however, the basis or activation func-
tions used in each network layer are identical and
their relation to the physical system has not been
studied.

A two-step procedure is therefore used to model
the control valve [21]. The analysis step in-
volves using a network with different basis func-
tions (e.g., polynomials, wavelets, sinusoids, fuzzy
membership functions, etc.) in each layer. This
makes 1t possible to determine which basis func-
tions dominate by observing the network output
weights, thereby revealing information about the
physical system being modelled. Furthermore, by
retaining only the dominant basis functions, fewer
parameters are required. Consequently, it is possi-
ble to reduce error variance (over fitting) and im-
prove generalisation. The bias error term is also
decreased because the dominant basis functions
are closely linked to the structure of the nonlinear
system being approximated.

The synthesis step involves generating a network
containing the dominant basis functions and a set
of sigmoid basis functions as shown in Fig. 4. The
sigmoid basis functions generate a step-wise ap-
proximation to the part of the mapping that the
dominant basis functions could not approximate.
The synthesis step may be viewed as a refinement

of the analysis step.

Using more than one hidden layer permits esti-
mators of higher order to be obtained using fewer
parameters. For instance, in the case of polyno-
mial basis functions, with a single hidden layer
network it is possible to achieve polynomial or-
ders equal to the number of basis functions n. On
the other hand, with a two hidden layer network
it is possible to achieve polynomial orders of n?/2
if n is even and (n — 1)(n + 1)/4 if n is odd. If
the basis functions are differentiable, the network
can easily be trained with any gradient-descent
technique. Back-propagation with the Levenberg-
Marquardt Optimisation [22, 19] was chosen be-
cause of its stability and fast (1 to 5 minutes on a
66 MHz 486 PC in this case) convergence rates.

5. RESULTS

After the analysis step, the valve mapping was
found to have a strong linear component. In the
synthesis step, one linear neuron together with
10 sigmoid functions was used to generate the
neural model. This number of sigmoid functions
was determined using cross-validation. That is,
by equating the approximating errors for training
data and validation (novel) data. This method is
a practical way of balancing the bias and variance
components of the generalisation error. When
presented with a random validation signal, the
neural model provided an accurate prediction as
shown in Fig. 5.



Explained
mapping

Fig. 4. Synthesis network structure

1.2
1l

0.8F |

g

o

2

17}

=]

& :
£ o6 |
=3

1]

o

2

o 0.4
>

0.2

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

Time samples

Fig. 5. Network prediction using random validation data, [---] Valve output [—] Neural network output



The performance of the fault detection system
was evaluated using both a real pneumatic con-
trol valve the valve mathematical model. Table 1
shows the high success rate obtained for the math-
ematical valve in 100 trials. Of these trials, 50

Table 1 Success rate of fault detection

technique
Fault simulated Success
Rate
Friction increase to 10% 100%

—5kPa input pressure offset 99%
—8 kPa input pressure offset | 100%

corresponded to a normal valve and the other 50
to a faulty valve. The signals were integrated over
160 samples to obtain their energies. The param-
eters used in the first-principles valve simulation
(Appendix A) were: stroke time Ty = 2s, time
constant 7, = 1s and Coulomb friction fraction
F = 0.05 (5%). These parameters were chosen
using experimental measurements [6]. The fault-
detection system was also implemented and tested
experimentally [6].

6. CONCLUSIONS

An experimental system for detecting faults in
pneumatic actuators for industrial control valves
has been described. The proposed system contin-
uously monitors readily-available on-line signals
and uses a neural network to predict the expected
fault-free signals. After suitable signal process-
ing, 1t processes the predicted and measured sig-
nals using a classifier to yield a direct indication
of correct or faulty operation. The neural net-
work used for predicting the actuator dynamic be-
haviour employs a special recurrent architecture
that resulted from a careful study of the trade-
offs between bias, variance and model complexity.

The investigation shows that neural network con-
cepts have an important role to play in system
identification and fault detection. They provide
a flexible computational framework for combining
approximation theory, statistical estimation and
pattern recognition techniques.

Laboratory implementation and testing of the
proposed fault detection system produced promis-
ing qualitative results and further development
and practical testing is recommended.
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APPENDICES

A. MATHEMATICAL MODEL OF A
PNEUMATIC ACTUATOR

In a typical pneumatic actuator, the input-air
pressure provides a sufficient force on a diaphragm
or piston to oppose a spring force, thereby pro-
ducing a displacement of the valve stem [23].
Experiments in the Control Engineering Labo-
ratory at the University of the Witwatersrand
have shown that the dynamic motion of the
valve stem can be considered to fall into three
regions: (1) velocity-limited motion for large
changes, (2) first-order exponential motion for
small changes and (3) no motion for very small
changes (because of Coulomb friction). TIf the
valve stem position is y and the difference between
the position demanded by the input pressure and
the valve stem position is u, the corresponding

differential equations are

dy ) +(lul— F)/T. if0<|u]—F
dt "~ <T/T,
0 if Jul = F <0

where Ty is the stroke time (time taken for the
valve to move from fully open to fully shut under
velocity-limited motion), ¢ is the time constant
and F' is the fraction of total valve stem movement
below which input pressure changes do not cause
movement. These parameters can be measured
experimentally for a given valve.



